Surname	Centre Number	Candidate Number
First name(s)		0

GCSE

3430U50-1

Z22-3430U50-1

FRIDAY, 27 MAY 2022 – MORNING

SCIENCE (Double Award)

Unit 5 – CHEMISTRY 2 FOUNDATION TIER

1 hour 15 minutes

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1.	13	
2.	9	
3.	9	
4.	8	
5.	6	
6.	7	
7.	8	
Total	60	

ADDITIONAL MATERIALS

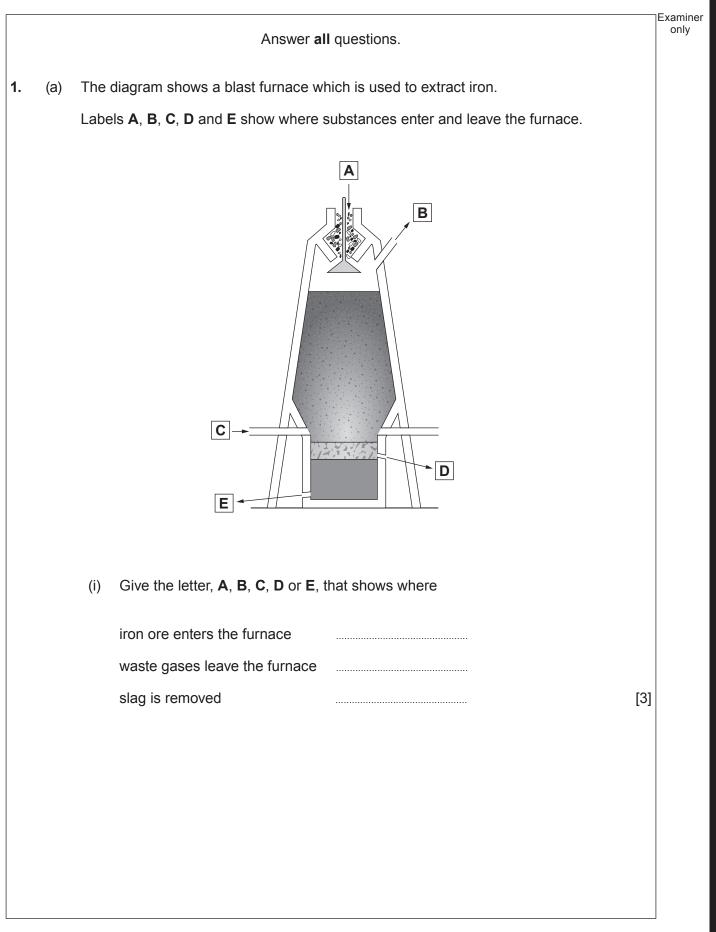
In addition to this examination paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid. You may use a pencil for graphs and diagrams only.

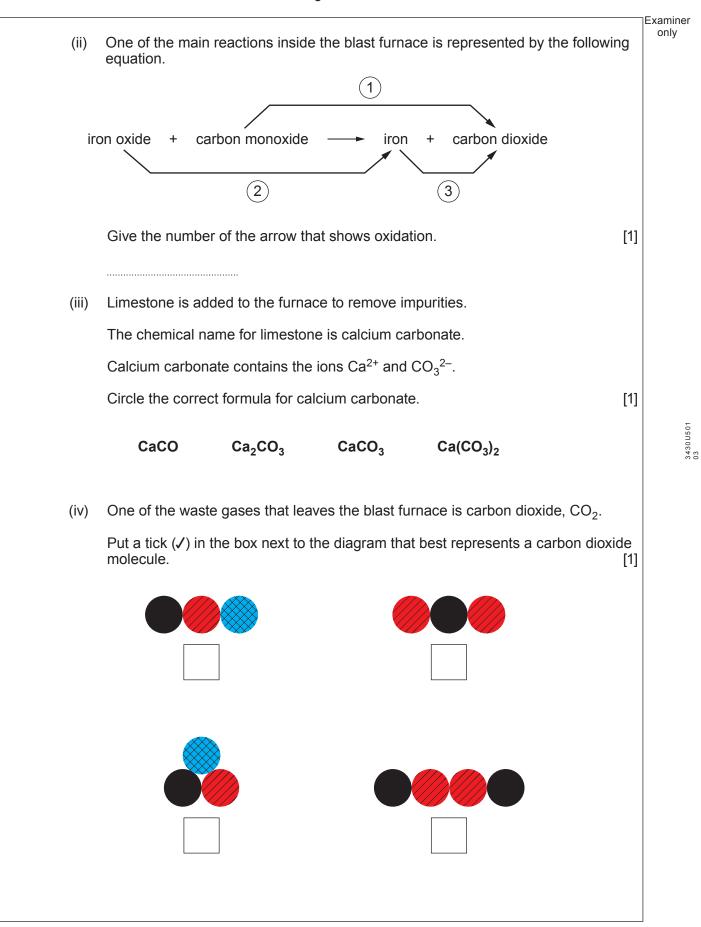
Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

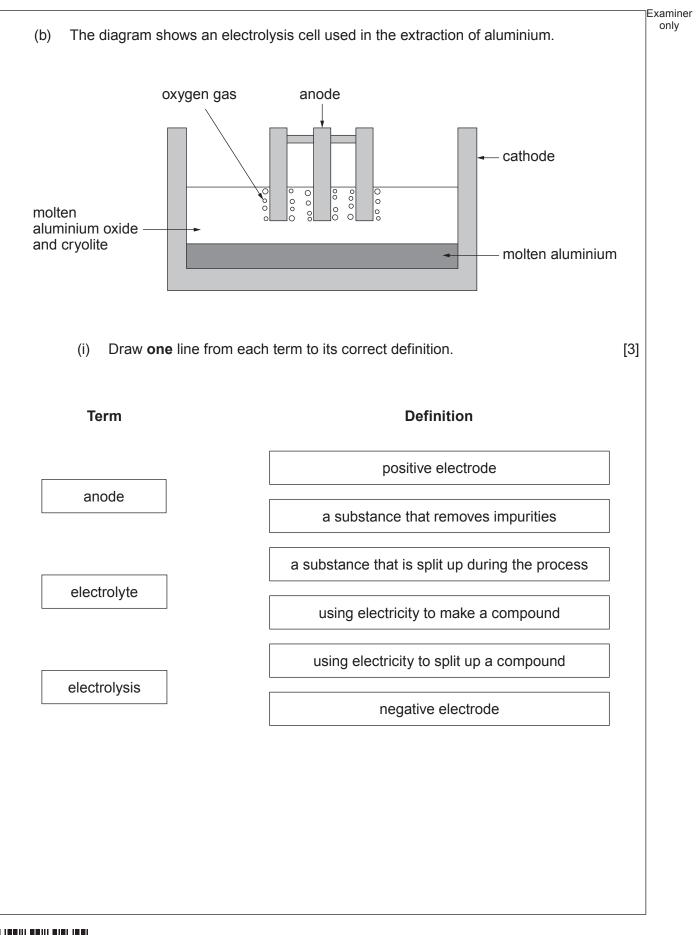
Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page at the back of the booklet, taking care to number the question(s) correctly.


INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

Question **5** is a quality of extended response (QER) question where your writing skills will be assessed.


The Periodic Table is printed on the back cover of this paper and the formulae for some common ions on the inside of the back cover.



2

3430U501 05

13

[1]

Examiner only

[3]

(ii) <u>Underline</u> the correct word in the brackets to complete each sentence.

Cryolite is added to lower the (**density / melting point / boiling point**) of the electrolyte.

When choosing a location for an aluminium plant in the UK, it is important to be near a port to (**import / export / clean**) the aluminium ore.

At the temperature inside the cell, the aluminium is produced as a (**solid / liquid / gas**).

(iii) The equation for the reaction that takes place during the extraction of aluminium is given below.

Choose a number from the box to balance the equation.

(a)		nah and Evan investigated the temperature increase when sodium hydroxide tion was added to dilute hydrochloric acid.	
	The	method they used to collect their results is given below.	
	1.	Measure 25 cm ³ of hydrochloric acid into a polystyrene cup.	
	2.	Record the temperature of the hydrochloric acid.	
	3.	Measure 25 cm ³ of sodium hydroxide and add it to the hydrochloric acid.	
	4.	Record the highest temperature of the mixture.	
	5.	Calculate the temperature increase for the reaction.	
	(i)	Choose apparatus from the box to complete the following sentences.	[2]
	balar	nce Bunsen burner thermometer measuring cylinder	
		test tube stopwatch tongs beaker	
		Hannah and Evan used a to measure 25 c	:m ³
		of hydrochloric acid accurately.	
		Hannah and Evan used a to measure the	
		temperature of the mixture.	
	(ii)	Give one way that Hannah and Evan could check that the method produces consistent results.	[1]
	(iii)	Hannah and Evan calculated a temperature increase of 17 °C.	
		Give the term used to describe a reaction that gives a temperature increase.	[1]

Examiner only

> 3430U501 07

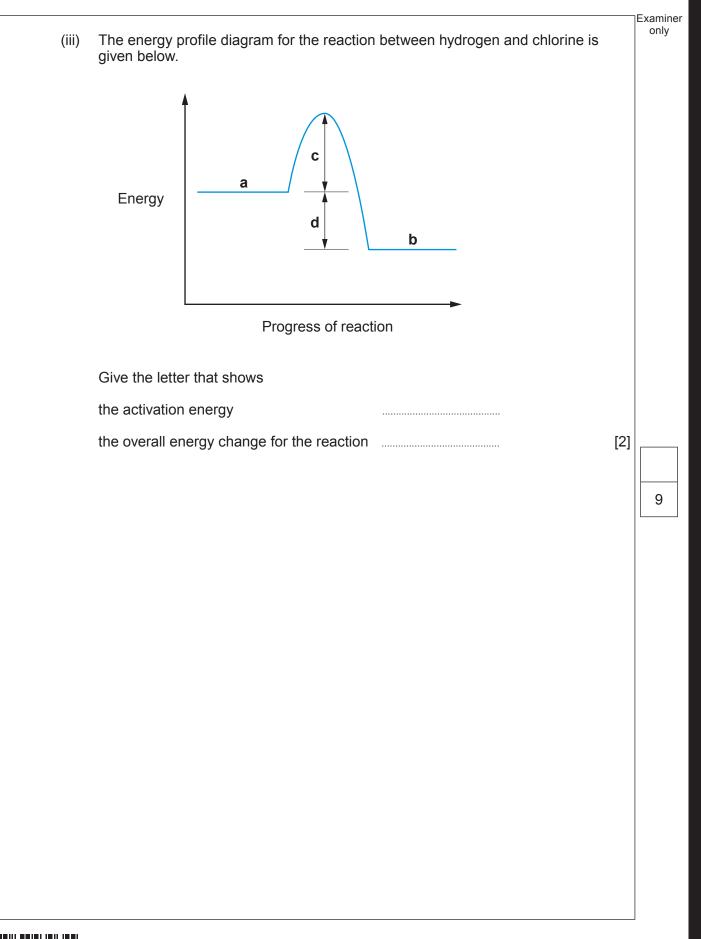
(b) When chlorine reacts with hydrogen, hydrogen chloride is formed.

$$H - H + CI - CI \longrightarrow H - CI$$

 $H - CI$

The bond energies are given in the table.

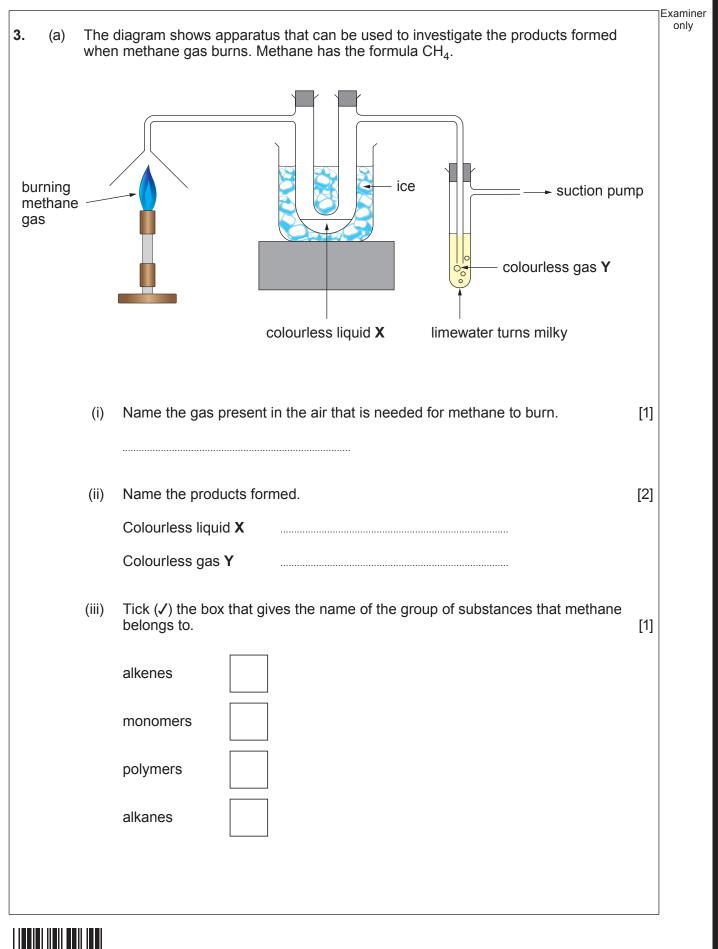
Bond	Bond energy (kJ)
Н — Н	436
CI — CI	243
H — CI	432


(i) The energy needed to break the bonds in the hydrogen and chlorine molecules is 679 kJ. Show how this value is calculated. [1]

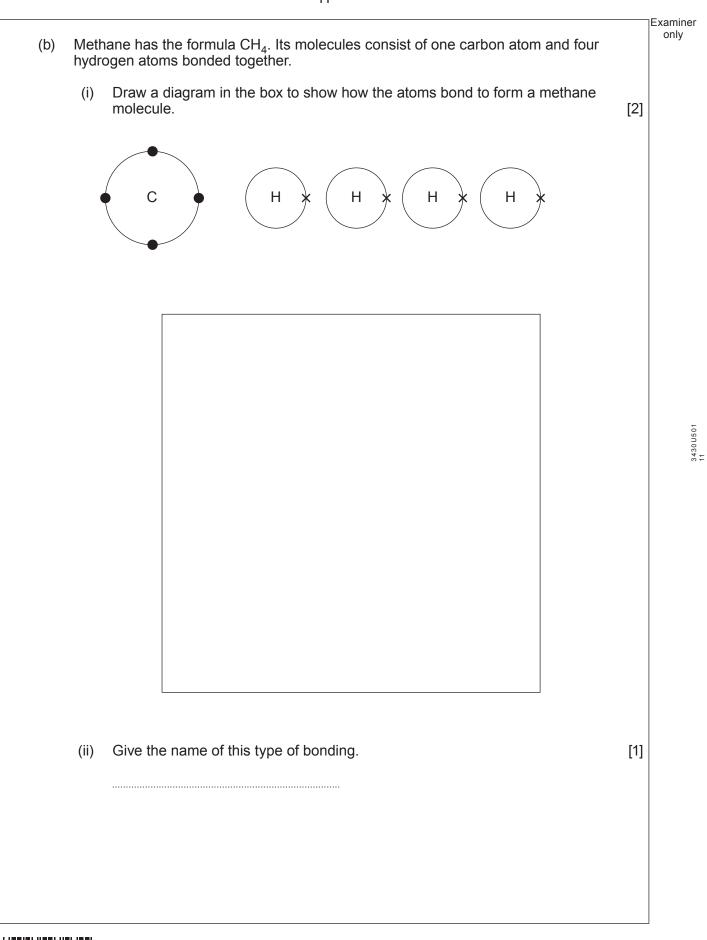
(ii) Calculate the energy released when **two** molecules of hydrogen chloride are formed. [2]

Energy released = kJ

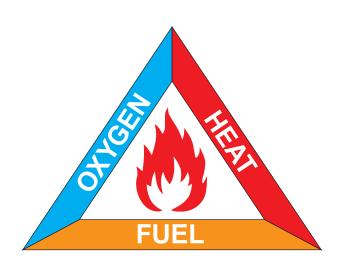
BLANK PAGE


9

PLEASE DO NOT WRITE ON THIS PAGE



3430U501 09


10

Examiner only

(c) The fire triangle can be used to explain how fires are extinguished.

The following table gives information about three different types of fire and the methods used to extinguish them.

However, each of the three fires has an **error** in **one** of the columns.

Fire	Type of fire	Firefighting method	How method works
1	chip pan fire	tea towel	removes the heat
2	bonfire	fire blanket	removes the heat
3	electrical fire	fire breaks	removes the fuel

Circle the errors for fires 1 and 2 and then correct them in the table below.

The error for fire **3** has already been circled and the correction given.

[2]

9

Fire	Correction
1	
2	
3	Fire breaks are used to extinguish a forest fire

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Examiner only

Only

[3]

 (a) Supermarkets across the UK now charge customers a minimum of 5p for every plastic carrier bag supplied.

> The reason for the charge is to reduce the number of plastic carrier bags used by consumers and therefore reduce waste and litter.

Since the introduction of the charge for plastic carrier bags in Wales, the number of these bags used by consumers has fallen by over 70%.

Similarly, reports in England claim that supermarkets have issued 83% fewer bags since the charge was introduced.

It is estimated that every person in the UK currently uses around 25 plastic carrier bags per year, compared to around 140 before charges were introduced.

The majority of the money retailers generate from sales of carrier bags is donated to good causes. A survey of retailers across England and Wales reported that £87 million had been donated to good causes since the introduction of the 5p charge, amounting to 4p for every bag sold.

(i) Use the information in the passage to decide whether the following statements are **true** or **false**.

Put a tick (\checkmark) in the correct column for each statement.

Statement	True	False
The number of plastic bags used in Wales and England has reduced since charging for them		
Retailers donate all the money generated from the sale of plastic bags to good causes		
Plastic bags are no longer used		
The charge for plastic bags has totally stopped their use in Wales		
The use of plastic bags leads to environmental problems		
The charge for plastic bags is beneficial to good causes		

(ii)	How many fewer plastic bags will each pe based on the estimated number of bag charge was introduced?		
		Number of bags =	
More	e than half of all consumers still regularly b	uy plastic bags.	
	pie chart shows the results of a survey when nost they would pay for a plastic bag.	ere 100 consumers were asked wha	at is
		nothing	
		5р	
	23	<mark>2</mark> 10p	
		20p	
		50p	
		F1	
		£1	
	the number of consumers that would be p		[2]
	the number of consumers that would be p tic bag.		[2]
			[2]
			[2]
	tic bag.		
plast	tic bag.	repared to pay more than 5p for a	
plast	tic bag. Nur	repared to pay more than 5p for a	
plast	tic bag. Nur	repared to pay more than 5p for a	

Examiner only

6

5. Seren and Ethan carried out an experiment to compare the reactivities of three metals.

The table shows the results obtained when each metal was placed into solutions of the nitrates of the other metals.

A tick (\checkmark) indicates that a reaction took place and a cross (×) indicates that no reaction took place.

	magnesium	iron	copper
magnesium nitrate		×	×
iron(II) nitrate	v		×
copper(II) nitrate	、	J	

Use the results to give the order of reactivity of the metals. Explain your answer in terms of the reactions taking place. Include equations in your answer. [6 QER]

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Examiner only

6. Polymer gels are commonly used in disposable nappies.

A company that manufactures disposable nappies was investigating the effect of temperature on the mass of water the polymer gel in their nappies is able to absorb.

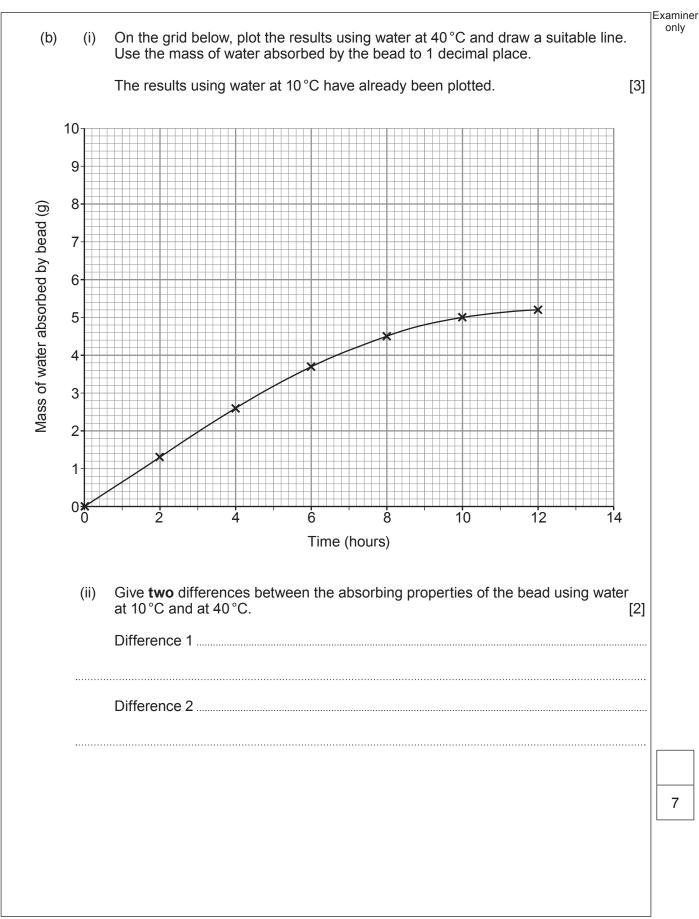
(a) The results collected using water at 40 °C are given below. The initial mass of the polymer gel bead was 0.035 g.

		Mass of water absorbed by bead (g) (to 1 decimal place)
0	0.035	0.0
2	4.048	4.0
4	6.030	6.0
6	7.280	7.2
8	7.891	7.9
10	8.181	8.1
12	8.181	8.1

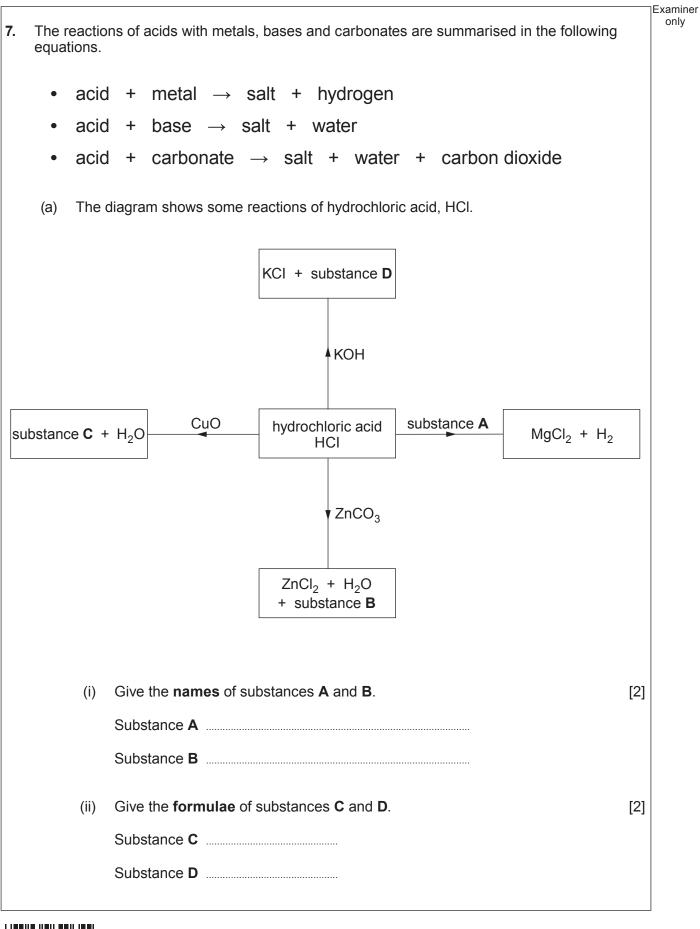
(i) The percentage increase in the mass of the bead is calculated using the following equation.

percentage increase =
$$\frac{\text{mass of water absorbed}}{\text{initial mass of bead}} \times 100$$

Calculate the percentage increase in the mass of the bead after 2 hours. Give your answer to the nearest whole number.


Percentage increase =%

[1]


(ii) What property of polymer gels does the figure calculated in part (i) demonstrate? [1]

	omplete the equation for the reaction between hydrochloric acid and sodium arbonate by
	 writing the formula of sodium carbonate on the dotted line putting a number into the box to balance the equation [2]
	HCI + \rightarrow 2NaCI + H ₂ O + CO ₂
(c) Si	lver nitrate solution is used to identify the chloride ions present in hydrochloric acid.
(i	 Give the observation made when silver nitrate solution is added to hydrochloric acid.
(ii	 Put a tick (✓) in the box next to the correct ionic equation for the reaction between silver nitrate and hydrochloric acid.
	Ag ⁺ (aq) + Cl⁻(aq) → AgCl(aq)
	Ag [−] (aq) + Cl ⁺ (aq) → AgCl(aq)
	Ag ⁺ (aq) + Cl [−] (aq) → AgCl(s)
	$Ag^+(s) + CI^-(s) \longrightarrow AgCI(s)$
	Ag [−] (aq) + Cl ⁺ (aq) → AgCl(s)
	END OF PAPER

Question number	on Additional page, if required. r Write the question number(s) in the left-hand margin.					
		1				
		·				
		·				
		·				

2	2
~	J

POSITIV	E IONS	NEGATIVE IONS		
Name	Formula	Name	Formula	
aluminium	Al ³⁺	bromide	Br ⁻	
ammonium	NH4 ⁺	carbonate	CO3 ²⁻	
barium	Ba ²⁺	chloride	CI	
calcium	Ca ²⁺	fluoride	F ⁻	
copper(II)	Cu ²⁺	hydroxide	OH⁻	
hydrogen	H⁺	iodide	1-	
iron(II)	Fe ²⁺	nitrate	NO ₃ ⁻	
ron(III)	Fe ³⁺	oxide	O ²⁻	
lithium	Li ⁺	sulfate	SO4 ²⁻	
nagnesium	Mg ²⁺			
nickel	Ni ²⁺			
ootassium	K ⁺			
silver	Ag ⁺			
sodium	Na ⁺			
zinc	Zn ²⁺			

	0	² He ⁴	20 Ne 10 10	40 Ar 18	84 Kr ypton 36	131 Xe enon 54	222 Rn adon 86	
	2	T		35.5 CI 17 A				
	-							
	9		16 O Sygen 8	32 Sulfu 16		128 Te Tellurium 52		
	Ŝ		14 N Nitrogen 7	31 Phosphorus 15	75 As Arsenic 33	122 Sb Antimony 51	209 Bismuth 83	
	4		12 C Carbon 6	28 Si 14	73 Ge Germanium 32	119 Sn Tin	207 Pb Lead 82	
	ი		11 B 5	27 Al 13	70 Ga Gallium 31	115 In Indium 49	204 TI Thallium 81	-
щ				<u>.</u>	65 Zn 30	112 Cd Cadmium 48	201 Hg Mercury 80	•
TABL					63.5 Cu Copper 29	108 Ag Silver 47	197 Au Gold 79	•
					59 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78	
RIOI					⁵⁹ Co Cobalt 27	103 Rh Rhodium 45	192 Ir Iridium 77	
THE PERIODIC TABLE	dne	L.]		56 Fe Iron 26	101 Ruthenium 44	190 Osmium 76	Key
Ŧ	Group	Hydrogen			55 Mn Manganese 25	99 Tc Technetium	186 Re Rhenium 75	
					52 Or Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74	
						93 Nb AD 41		•
					48 Ti Z2	91 Zr Zirconium 40	179 Hf Hafnium 72	
					45 Sc 21	89 Yttrium 39	139 La Lanthanum 57	227 Actinium 89
	2		9 Beryllium 4	24 Mg 12	40 Ca Calcium 20	88 Strontium 38	137 Ba Barium 56	226 Ra Radium 88
	~		7 Lİ Lithium 3	23 Na Sodium	39 K Potassium 19	86 Rb 87 37	133 Cs Caesium 55	223 Fr Francium 87
				L			L	

24

relative atomic mass atomic number Ar Symbol Name

(3430U50-1)